Bifurcations of а separatrix loop of a sewn saddle-node in a generic two-parameter family of piecewise smooth vector fields

Authors

  • Vladimir Sh. Roitenberg Yaroslavl State Technical University

DOI:

https://doi.org/10.52575/2687-0959-2025-57-3-186-192

Keywords:

Piecewise Smooth Vector Field, Saddle-Node, Separatrix Loop, Bifurcation, Stable Periodic Trajectory

Abstract

We consider a dynamical system on the plane defined by a piecewise smooth vector field. Let this vector field have a singular point S on the switching line such that in the neighborhood of S, on the one side of L, the field coincides with a smooth vector field for which S is a saddle-node with a stable parabolic sector and a central manifold transversal to L, and on the other side, it coincides with a smooth vector field transversal to L. It is also assumed that from the point S go a positive semitrajectory Γ, which does not contain singular points different from S and is limiting to S. We consider a generic two-parameter family of piecewise smooth vector fields, a deformation of the vector field under consideration. We describe a set of parameters for which a vector field from this family has a stable periodic trajectory born from a loop  Γ.

Downloads

Download data is not yet available.

Author Biography

Vladimir Sh. Roitenberg, Yaroslavl State Technical University

Candidate of Physical and Mathematical Sciences, Assosiate Professor, Assosiate Professor of the Department of Higher Mathematics, Yaroslavl State Technical University,
Yaroslavl, Russia
E-mail: vroitenberg@mail.ru
ORCID: 0000-0002-1293-7998

References

Список литературы

Андронов А.А, Леонтович Е.А. Некоторые случаи зависимости предельных циклов от параметра. Ученые записки Горьковского университета. 1939;6:3—24.

Андронов А.А., Леонтович Е.А., Гордон И.И., Майер А.Г. Теория бифуркаций динамических систем на плоскости. М., Наука. 1967. 488 с.

Шильников Л.П. О некоторых случаях рождения периодических движений из особых траекторий. Математический сборник. 1963; 61(4):443-466.

Козлова В.С. Особые точки первой степени негрубости, лежащие на линии разрыва правых частей системы. Москва, МГУ. 1984. Деп. в ВИНИТИ. № 4284-84.

Филиппов А.Ф. Дифференциальные уравнения с разрывной правой частью. М., Наука, 1985. 224 с.

di Bernardo M., Budd Ch.J., Capneys A.R., Kowalczyk P. Piecewise smooth dynamical systems. Appl. Math. Sci. V. 163. London, Springer-Verlag. 2008. 483 p.

Guardia M., Seara T.M., Teixeira M.A. Generic bifurcations of low codimension of planar Filippov systems. Journal of Differential Equations. 2011;250(4):1967–2023.

Kuznetsov Yu.A., Rinaldi S, Gragnani A. One-parameter bifurcations in planar Filippov systems. International Journal of Bifurcation and Chaos. 2003;13(8):2157–2188.

Simpson D.J.W. Bifurcations in piecewise-smooth continuous systems. World scientific series on nonlinear science, series A. Vol. 69. World Scientific Publ. 2010. 238 p.

Ройтенберг В.Ш. О бифуркациях петель сепаратрис особых точек на линии разрыва. Ярославль, Яросл. политехн. ин-т. 1987. Деп. в ВИНИТИ. № 2795-В87.

Ройтенберг В.Ш. О рождении предельного цикла из петли сепаратрисы сшитого седло-узла. Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика. 2022; 22(2):159-168.

Палис Ж., В. Мелу. Геометрическая теория динамических систем. Введение. М., Мир. 1986. 301 с.

Шильников Л.П., Шильников А.Л., Тураев Д.В., Чуа Л. Методы качественной теории в нелинейной динамике. Часть 1. Москва–Ижевск, Институт компьютерных исследований. 2004. 547 c.

Марсден Дж., Мак-Кракен М. Бифуркация рождения цикла и ее приложения. М., Мир. 1980. 368 с.

Андронов А.А., Леонтович Е.А., Гордон И.И., Майер А.Г. Качественная теория динамических систем второго порядка. М., Наука. 1966. 568 с.

References

Andronov AA., Leontovich EA. Some cases of dependence of limit cycles on a parameters. Scientific notes of Gorky University. 1939;6:3-24 (In Russ).

Andronov AA., Leontovich EA., Gordon II., Maier AG. Theory of bifurcations of dynamic systems on a plane. Moscow, Nauka Publ. 1967. 488 p (In Russ).

Shilnikov LP. Some cases of generation of period motions from singular trajectories. Sbornik. Mathematics. 1963;61(4):443-466 (In Russ).

Kozlova VS. Singular points of the first degree of non-coarsenees lying on a line of discontinuity of the right-hand parts of a system. 1984. Deposited in VINITI. No. 4284-84 (In Russ).

Filippov AF. Differential equations with discontinuous right-hand side. Moscow, Nauka Publ. 1985. 224 (In Russ).

di Bernardo M., Budd ChJ., Capneys AR., Kowalczyk P. Piecewise smooth dynamical systems. Appl. Math. Sci. V. 163. London, Springer-Verlag. 2008. 483 p.

Guardia M., Seara TM., Teixeira MA. Generic bifurcations of low codimension of planar Filippov systems. Journal of Differential Equations. 2011;250(4):1967–2023.

Kuznetsov YuA., Rinaldi S, Gragnani A. One-parameter bifurcations in planar Filippov systems. International Journal of Bifurcation and Chaos. 2003;13(8):2157–2188.

Simpson DJW. Bifurcations in piecewise-smooth continuous systems.World scientific series on nonlinear science, series A. Vol. 69. World Scientific Publ. 2010. 238 p.

Roitenberg VSh. On bifurcations of separatrix loops of singular points on the line of discontinuity. 1984. Deposited in VINITI. No. 2795-В87 (In Russ).

Roitenberg VSh. On generation of a limit cycle from a separatrix loop of a sewn saddle-node. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics. 2022; 22(2):159–168 (In Russ).

Palis J., MeloW. Geometric theory of dynamical systems. An introduction. New-York; Heidelberg; Berlin. Springer-Verlag. 1982. 198 p.

Shilnikov LP., Shilnikov AL., Turaev DV., Chua LO. Methods of qualitative theory in nonlinear dynamics: Part 1. River Edge, N.-J. World Scientific. 1998. 412 p.

Marsden JE., McCracken M. The Hopf bifurcation and its applications. New-York. Springer-Verlag. 1986.

Andronov AA., Leontovich EA., Gordon II., Maier AG. The qualitative theory of dynamical systems of second order. Moscow, Nauka Publ. 1966. 568 p. (In Russ).


Abstract views: 7

##submission.share##

Published

2025-09-30

How to Cite

Roitenberg, V. S. (2025). Bifurcations of а separatrix loop of a sewn saddle-node in a generic two-parameter family of piecewise smooth vector fields. Applied Mathematics & Physics, 57(3), 186-192. https://doi.org/10.52575/2687-0959-2025-57-3-186-192

Issue

Section

Mathematics