Absolutely Continuous, Log-Concave Unimodal Distributions
DOI:
https://doi.org/10.52575/2687-0959-2025-57-3-208-223Keywords:
Convex Functions, Composition of Distributions, Univariate Probability Distributions, Unimodal Distributions, Strong UnimodalityAbstract
In this paper, we study strongly unimodal distribution functions on R according to I. A. Ibragimov. We improve the proof of a sufficient criterion for strongly unimodal distribution based on the concept of logarithmic concavity of the distribution density.
Downloads
References
Kac M. Mathematical mechanisms of phase transitions / Statistical Physics Phase Transitions and Superfluidity ed. M.Chretiln at al, Vol 1, 2 / New York: Gordon and Beach Science Publishers, 1968.
Ibragimov I. A. On the Composition of Unimodal Distributions. – Theory of Probability and its Applications. – 1956. – 1;2. – P. 255–260.
Rudin W. Principles of Mathematical Analysis / New York: MsGrow-Hill Book Company, 1964. – 320 p.
As Lebesgue-Stieljes Integral /Leizig: G. Teubner Verlagsgesellschaft, 1956. – 328 p.
Virchenko Yu. P., Novoseltsev A. D. Unimodality of probability distributions for sample maximums of the Erlang independent random values.– Belgorod State University Scientific Bulletin. Mathematics & Physics. – 2019. – 51(3). – C. 366–373.
Kolmogorov A. N., Fomin S.V. Elements of the Theory of Functions and Functional Analysis 2 / Albany, New York: Graylock Press, 1961. – 148 p.
Gnedenko B. V., Kolmogorov A. N. Limit Distributions For Sums Of Independent Random Variables / Cambridge: Addison-Wensley Publishing Company, Inc., 1954. – 284 p.
Zorich V. A. Mathematical Analysis I/ New York: Springer-Verlag, 2002. – 552 p.
Virchenko Yu. P., Novoseltsev A. D. Probability distributions unimodality of finite sample extremes of independent Erlang random variables. – Journal of Physics: Conf. Series. – 2020. – 1479. – 012104. doi:10.1088/1742-6596/1479/1/012104.
Abstract views: 29
##submission.share##
Published
How to Cite
Issue
Section
Copyright (c) 2025 Applied Mathematics & Physics

This work is licensed under a Creative Commons Attribution 4.0 International License.
