TWO-SCALE EXPANSION METHOD IN THE PROBLEM OF TEMPERATURE OSCILLATIONS IN FROZEN SOIL
DOI:
https://doi.org/10.52575/2687-0959-2022-54-1-28–32Keywords:
The Stefan problem, Stokes equations for a viscous compressible fluid, homogenizationAbstract
The paper investigates the problem of the dynamics of frozen soil with a change in the external temperature at the boundary of the physical domain under consideration. According to the generally accepted scheme, independently proposed by R. Barridge and J. Keller and E. Sanchez-Palencia in 1980, we first formulate a microscopic mathematical model, that describes the physical process at the microscopic level by the equations of classical Newtonian mechanics of continuous media. A natural small parameter here is the average dimensionless diameter of the pores of the solid skeleton. In this model the change in the temperature of the medium is controlled by the Stefan problem, and the dynamics of fluid in the pores of an absolutely rigid skeleton obeys the Stokes equations for a viscous incompressible fluid. The second and main point of the method is the derivation of the macroscopic equations of the physical process, which are obtained by passing to the limit as a small parameter tends to zero (homogenization). The purpose of this work is to derive macroscopic (homogenized) equations describing the dynamics of frozen soil using the two-scale expansion method.
Downloads
References
Барренблатт Г. П., Ентов В. М., Рыжик В. М. 1972. Теория нестационарной фильтрации жидкости и газа. М., Недра, 288.
Васильев В. И., Максимов А. М., Петров Е. Е., Цыпкин Г. Г. 1996. Тепломассоперенос в промерзающих и протаивающих грунтах. М, Наука, 224.
Тер-Мартиросян З. Г., Горбачев П. А. 2012. Промерзание грунта с учетом переменной температуры на поверхности и фазовых переходов в интервале температур. Весник МГСУ, 1: 32–36.
Burridge R. , Keller J. 1981. Poroelasticity equations derived from microstructure. J. Acoust. Soc. Am., 70(4): 1140–1146.
Meirmanov A. 1992. The Stefan Problem. Berlin-New York: Walter de Gruyter, 311.
Meirmanov A. 2014. Mathematical models for poroelastic flows. Amsterdam-Paris-BeiJing: Atlantis Press, 449.
Nguetseng G. 1989. A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal., 20(3): 608–623.
Abstract views: 124
##submission.share##
Published
How to Cite
Issue
Section
Copyright (c) 2022 Applied Mathematics & Physics
This work is licensed under a Creative Commons Attribution 4.0 International License.