Стохастическая дифференциальная геометрия гладких поверхностей положительной кривизны
DOI:
https://doi.org/10.52575/2687-0959-2023-55-3-220-227Ключевые слова:
основная теорема теории поверхностей, формула Ито, поверхность ограниченного искривления, симметричные интегралыАннотация
В предлагаемой работе выводится стохастический аналог уравнений Петерсона – Кодацци для двумерных поверхностей положительной кривизны класса Ck. Для исследования этих объектов используются методы стохастического анализа, точнее формула Ито и свойства броуновского движения, порождённого метрикой поверхности. Существенным отличием от результатов И. Я. Бакельмана [3] является применение формулы Ито и второй производной Ито, которая вводится в этой работе. Также используется техника симметричных интегралов (детерменированного аналога) стохастических интегралов Стратоновича).
Скачивания
Библиографические ссылки
Александров А. Д., Залгаллер В. А. 1962. Двумерные многообразия ограниченной кривизны. Труды математического института имени В. А. Стеклова. Изд. Академии наук СССР. М.–Л.: 3–262.
Анулова С. В., Веретенников А. Ю., Крылов Н. В., Липцер Р. Ш., Ширяев А. Н. 1989. Стохастическон исчисление. Итоги науки и техники. Современные проблемы математики. Фундаментальные направления. ВИНИТИ. 49: 5–260.
Бакельман И. Я. 1956. Дифференциальная геометрия гладких нерегулярных поверхностей. УМН. 11(2)68: 67–124.
Боровский Ю. Е. 1988. Системы Пфаффа с коэффициентами из Ln и их геометрические приложения. Сибирский математический. журнал. 24(2): 10–16.
Ватанабе С, Икеда Н. 1986. Стохастические дифференциальные уравнения и диффузионные процессы. М., Наука, 448.
Дынкин Е. Б. 1963. Марковские процессы. М., Физматлит, 860.
Насыров Ф. С. 2006. Симметричные интегралы и стохастический анализ. Теория вероятностей и её применения. 51(3): 496–517.
Рашевский П. К. 1939. Курс дифференциальной геометрии. ГОНТИ, 360.
Решетняк Ю. Г. 1989. Двумерные многообразия ограниченной кривизны, Геометрия – 4. Итоги науки и техники. Серия Современные проблемы математики. Фундаментальные направления. ВИНИТИ. М. 70: 7-–189.
Fukushima M., Oshima Y., Takeda M. 1994. Dirishlet Forms and Symmetric Markov Processes. Walter de Gruyter. Berlin. New York, 390.
Sasaki S. 1958. A global formulation of the foundamental theorem of the theory of surfaces in three dimensional Euclidean space. Nagoya Math J. 13: 69–82.
Просмотров аннотации: 77
Поделиться
Опубликован
Как цитировать
Выпуск
Раздел
Copyright (c) 2023 Прикладная математика & Физика
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.