A Class of Quasilinear Equations with Hilfer Derivatives
DOI:
https://doi.org/10.52575/2687-0959-2023-55-4-289-298Keywords:
Hilfer Derivative, Cauchy Type Problem, Mittag – Leffler Function, Quasilinear Equation, Contraction Mapping Theorem, Local Solvability, Global SolvabilityAbstract
We investigate the solvability issues of the Cauchy type problem for linear and quasilinear equations with Hilfer fractional derivatives resolved with respect to the higher-order derivative. The linear operator at the unknown function in the equation is assumed to be bounded. The unique solvability of the Cauchy type problem for a linear inhomogeneous equation is proved. Using the resulting solution formula, we reduce the Cauchy type problem for the quasilinear differential equation to an integro-differential equation of the form y = G(y). Under the local Lipschitz condition of the nonlinear operator in the equation, the contraction of the operator G in a suitably chosen metric space of functions on a sufficiently small segment is proved. Thus, we prove the theorem on the existence of a unique local solution to a Cauchy type problem for the quasilinear equation. The result on the unique global solvability of this problem is obtained by proving the contraction of a sufficiently large degree of the operator G in a special space of functions on an initially given segment when the Lipschitz condition on a nonlinear operator in the equation is fulfilled. We use the general results to study Cauchy type problems for a quasilinear system of ordinary differential equations and for a quasilinear system of integro-differential equations.
Acknowledgements
The work was funded by the grant of the President of the Russian Federation for state support of leading scientific schools, project number NSH-2708.2022.1.1.
Downloads
References
Нахушев А.М. Дробное исчисление и его применение. М.: Физматлит; 2003. 272 c.
Учайкин В.В. Метод дробных производных. Ульяновск: Артишок; 2008. 512 c.
Hilfer R. Experimental evidence for fractional time evolution in glass forming materials. Chemical Physics. 2002;284:399–408.
Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. London: World Scientific; 2010. 368 p.
Tarasov V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Berlin, Heidelberg: Springer; 2011. 505 p.
Псху А.В. Уравнения в частных производных дробного порядка. М.: Наука; 2005. 199 c.
Diethelm K. The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type. Berlin, Heidelberg: Springer; 2010. 247 p.
Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations. Amsterdam, Boston, Heidelberg: Elsevier Science Publishing; 2006. 541 p.
Miller K.S., Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: John Wiley & Sons; 1993. 384 p.
Hilfer R. Applications of Fractional Calculus in Physics. Singapore: World Scientific; 2000. 463 p.
Волкова А.Р., Федоров В.Е., Гордиевских Д.М. О разрешимости некоторых классов уравнений с производной Хилфера в банаховых пространствах. Челяб. физ.-мат. журн. 2022;7(1):11–19. DOI: 10.47475/2500-0101-2022-17101
Furati K.M., Kassim M.D., Tatar N.-E. Existence and uniqueness for a problem involving Hilfer fractional derivative. Computers and Mathematics with Applications. 2012;64(6):1616–1626. DOI:10.1016/j.camwa.2012.01.009
Hilfer R., Luchko Y., Tomovski Z. Operational method for the solution of fractional differential equations with generalized Riemann–Liouville fractional derivatives. Fractional Calculus and Applied Analysis. 2009;12:299–318.
Джрбашян M.M., Нерсесян A.Б. Дробные производные и задача Коши для дифференциальных уравнений дробного порядка. Изв. АН Армянской СССР. Математика. 1968;3:3–28.
Bajlekova E.G. Fractional Evolution Equations in Banach Spaces. PhD thesis. Eindhoven: Eindhoven University of Technology; 2001. 107 p.
Abstract views: 106
##submission.share##
Published
How to Cite
Issue
Section
Copyright (c) 2023 Applied Mathematics & Physics
This work is licensed under a Creative Commons Attribution 4.0 International License.