Linear-Autonomous Symmetries of a Fractional Guéant – Pu Model

Authors

  • Khristofor V. Yadrikhinskiy Yakut Branch of the Far Eastern Far Eastern Center for Mathematical Research, North East Federal University named after M. K. Ammosov
  • Vladimir E. Fedorov Chelyabinsk State University; Yakut Branch of the Far Eastern Far Eastern Center for Mathematical Research, North East Federal University named after M. K. Ammosov

DOI:

https://doi.org/10.52575/2687-0959-2023-55-3-236-247

Keywords:

Partial Differential Equation, Group Analysis, Linear-Autonomous Transformation, Equivalence Transformation, Symmetry, Lie Algebra, Option Pricing

Abstract

We study the group structure of the Guéant – Pu equation of the fractional-order with respect to the price of the underlying asset variable. It is one of the models of the dynamics of options pricing, taking into account transaction costs. The search for continuous groups of linear-autonomous equivalence transformations is carried out. The equivalence transformations found are used in constructing a group classification (within the framework of linear-autonomous transformations) of the equation under consideration with a nonlinear function in the right side of the equation as a free element. In the case of a nonzero risk-free rate, it is shown that two cases of Lie algebras of the equation under study are possible: two-dimensional in the case of a special type of free element and one-dimensional in the remaining cases. If the risk-free rate is zero, there are four variants of the Lie algebra, which can be two-dimensional, three-dimensional or four-dimensional. In the future, we assume to use the obtained group classification in calculating invariant solutions and conservation laws of the model under study.

Downloads

Download data is not yet available.

Author Biographies

Khristofor V. Yadrikhinskiy, Yakut Branch of the Far Eastern Far Eastern Center for Mathematical Research, North East Federal University named after M. K. Ammosov

Junior Research Assistant of Yakut Branch of the Far Eastern Center for Mathematical Research, North East Federal University named after M. K. Ammosov,
Yakutsk, Russia

Vladimir E. Fedorov, Chelyabinsk State University; Yakut Branch of the Far Eastern Far Eastern Center for Mathematical Research, North East Federal University named after M. K. Ammosov

Doctor of Physical and Mathematical Sciences, Professor, Professor of Mathematical Analysis Department, Chelyabinsk State University;
Chelyabinsk, Russia;

Chief Scientific Officer of Yakut Branch of the Far Eastern Center for Mathematical Research, North East Federal University named after M. K. Ammosov;
Yakutsk, Russia

References

Газизов Р. К., Касаткин А. А., Лукащук С. Ю. 2007. Непрерывные группы преобразований дифференциальных уравнений дробного порядка. Вестник УГАТУ, 9(3): 125–135.

Ядрихинский Х. В., Федоров В. Е. 2021. Инвариантные решения модели Геана – Пу ценообразования опционов и хеджирования. Челябинский физико-математический журнал, 6(1): 43–52. doi:10.47475/2500-0101-2021-16104.

Fall A. N., Ndiaye S. N., Sene N. 2019. Black — Scholes option pricing equations described by the Caputo generalized fractional derivative. Chaos, Solitons and Fractals, 125: 108–118. doi:10.1016/j.chaos.2019.05.024.

Gazizov R. K., Kasatkin A. A., Lukashchuk S. Y. 2019. Symmetries, conservation laws and group invariant solutions of fractional PDEs. In: Fractional Differential Equations, vol. 2, Walter de Gruyter GmbH, Berlin, Munich, Boston, 2019, 353–382. doi:10.1515/9783110571660-016.

Gueant O. 2016. The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making. Chapman and Hall/CRC, London, 302. doi:10.1201/b21350.

Gueant O., Pu J. 2013. Option pricing and hedging with execution costs and market impact. arXiv: 1311.4342. doi:10.48550/arXiv.1311.4342.

Kumar S., Yildirin A., Khan Y., Jafari H., Sayevand K., Wei L. 2012. Analytical solution of fractional Black – Scholes European option pricing equations using Laplace transform. Journal of Fractional Calculus and Applications, 2: 1–9.

Sawangtong P., Trachoo K., Sawangtong W., Wiwattanapataphee B. 2018. The analytical solution for the Black – Scholes equation with two assets in the Liouville – Caputo fractional derivative sense. Mathematics, 8: 129. doi:10.3390/math6080129.

Sitnik S. M., Yadrikhinskiy Kh. V., Fedorov V. E. 2022. Symmetry analysis of a model of option pricing and hedging. Symmetry, 14: 1841. doi:10.3390/sym14091841.

Yadrikhinskiy Kh. V., Fedorov V. E. 2023. Recursion operators for the Gueant–Pu model. Lobachevskii Journal of Mathematics, 44(3): 1236–1240. doi:10.1134/S1995080223030344.

Yadrikhinskiy Kh. V., Fedorov V. E. 2022. Symmetry analysis of the Gueant – Pu model. AIP Conference Proceedings, 2528: 020035. doi:10.1063/5.0106164.

Yadrikhinskiy Kh. V., Fedorov V. E., Dyshaev M. M. 2021. Group analysis of the Gueant and Pu model of option pricing and hedging, In: Symmetries and Applications of Differential Equations, ed. by A. C. J. Luo and R. K. Gazizov, Springer, Singapore, 173–203. doi:10.1007/978-981-16-4683-6_6.


Abstract views: 91

##submission.share##

Published

2023-09-30

How to Cite

Yadrikhinskiy, K. V., & Fedorov, V. E. (2023). Linear-Autonomous Symmetries of a Fractional Guéant – Pu Model. Applied Mathematics & Physics, 55(3), 236-247. https://doi.org/10.52575/2687-0959-2023-55-3-236-247

Issue

Section

Mathematics