Cauchy Type Problem for Some Quasilinear Equations with Riemann – Liouville Derivatives and a Sectorial Operator

Authors

DOI:

https://doi.org/10.52575/2687-0959-2024-56-4-261-272

Keywords:

Riemann — Liouville Derivative, Cauchy Type Problem, Quasilinear Equation, Contraction Mapping Theorem, Local Solvability, Global Solvability

Abstract

We studies the issues of solvability of the Cauchy type problem for quasi-linear equations solved with respect to the highest fractional Riemann – Liouville derivative, the operator in the linear part at an unknown function in the equation is assumed to be sectorial. In this case, the nonlinear operator depends on low-order fractional derivatives with an arbitrary fractional part. Theorems on the local and global existence of a unique solution are obtained under the condition of local Lipschitz continuity and Lipschitz continuity of a nonlinear operator, respectively, in the case of its continuity in the norm of the graph of the sectorial operator. The Cauchy type problem for a quasi-linear equation is reduced to an integro-differential equation in a specially selected functional space. To prove the existence of a unique solution, Banach Theorem on the fixed point of a compressive map in a complete metric space is used. The abstract result obtained is applied for the study of the existence and uniqueness of a solution of a class of initial boundary value problems for nonlinear partial differential equations with polynomials from a self-adjoint elliptic operator in spatial variables and with fractional derivatives in time.

Downloads

Download data is not yet available.

Author Biographies

Vladimir E. Fedorov, Chelyabinsk State University

доктор физико-математических наук, профессор, заведующий кафедрой математического анализа, Челябинский государственный университет,
г. Челябинск, Россия
E-mail: kar@csu.ru
ORCID: 0000-0002-0787-3272

Anna S. Avilovich, Chelyabinsk State University

Candidate of Physical and Mathematical Sciences, Assosiate Professor, Associate Professor of Department of Computational Mechanics and Information Technology, Chelyabinsk State University,
Chelyabinsk, Russia
E-mail: avilovich_aas@bk.ru
ORCID: 0000-0001-6433-5852

References

Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника; 1987. 688 с.

Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations. Amsterdam, Boston, Heidelberg: Elsevier Science Publishing; 2006. 541 p.

Нахушев А.М. Дробное исчисление и его применение. М.: Физматлит; 2003. 272 c.

Prüss J. Evolutionary integral equations and applications. Basel: Springer; 1993. 366 p. https://doi.org/10.1007/978-3-0348-8570-6

Bazhlekova E.G. Subordination principle for fractional evolution equations. Fractional Calculus & Applied Analysis. 2000;3(3):213–230.

Bazhlekova E.G. Subordination in a class of generalized time-fractional diffusion-wave equations. Fractional Calculus & Applied Analysis. 2018;21(4):869–900. https://doi.org/10.1515/fca-2018-0048

Глушак А.В. О задаче типа Коши для абстрактного дифференциального уравнения с дробной производной. Вестн. Воронеж. гос. ун-та. Сер. Физика, математика. 2001;2:74–77. http://www.vestnik.vsu.ru/content/physmath/2001/02/toc_ru.asp

Глушак А.В., Манаенкова Т.А. Прямая и обратная задачи для абстрактного дифференциального уравнения, содержащего дробные производные Адамара. Дифференц. уравнения. 2011;(47)9:1294–1304. https://www.elibrary.ru/item.asp?id=16766509

Bajlekova E.G. Fractional Evolution Equations in Banach Spaces. PhD thesis. Eindhoven: Eindhoven University of Technology; 2001. 107 p.

Fedorov V.E., Romanova E.A. Inhomogeneous fractional evolutionary equation in the sectorial. Journal of Mathematical Sciences. 2020;250(5):819–829. https://doi.org/10.1007/s10958-020-05047-x

Fedorov V.E., Avilovich A.S., Borel L.V. Initial Problems for Semilinear Degenerate Evolution Equations of Fractional Order in the Sectorial Case. Nonlinear Analysis and Boundary Value Problems. NABVP 2018, Santiago de Compostela, Spain, September 4–7. Ed. by I.Area, A.Cabada, J.A.Cid etc. Springer Proceedings in Mathematics and Statistics. 2019;292:41–62. https://doi.org/10.1007/978-3-030-26987-6_4

Fedorov V.E., Zakharova T.A. Nonlocal solvability of quasilinear degenerate equations with Gerasimov – Caputo derivatives. Lobachevskii Journal of Mathematics. 2023;44(2):595–606. https://doi.org/10.1134/S1995080223020178

Fedorov V.E., Kostic M., Zakharova T.A. Quasilinear fractional order equations and fractional powers of sectorial operators. Fractal and Fractional. 2023;7(5)385. https://doi.org/10.3390/fractalfract7050385

Федоров В.Е., Авилович А.С. Задача типа Коши для вырожденного уравнения с производной Римана — Лиувилля в секториальном случае. Сиб. мат. журн. 2019;60(2):461–477. https://doi.org/10.33048/smzh.2019.60.216

Авилович А.С., Гордиевских Д.М., Федоров В.Е. Вопросы однозначной разрешимости и приближённой управляемости для линейных уравнений дробного порядка с гёльдеровой правой частью. Челябинский физико-математический журнал. 2020;(5)1:5–21. https://doi.org/10.24411/2500-0101-2020-15101

Fedorov V.E., Avilovich A.S. Semilinear fractional-order evolution equations of Sobolev type in the sectorial case. Complex Variables and Elliptic Equations. 2021;66(6–7):1108–1121. https://doi.org/10.1080/17476933.2020.1833870

Fedorov V.E., Turov M.M. Sectorial tuples of operators and quasilinear fractional equations with multi-term linear part. Lobachevskii Journal of Mathematics. 2022;(43)6:1502–1512. https://doi.org/10.1134/S1995080222090074

Федоров В.Е., Туров М.М. Дефект задачи типа Коши для линейных уравнений с несколькими производными Римана — Лиувилля. Сиб. мат. журн. 2021;62(5):1143–1162. https://doi.org/10.33048/smzh.2021.62.514

Туров М.М. Квазилинейные уравнения с несколькими производными Римана — Лиувилля произвольных порядков. Челябинский физико-математический журнал. 2022;(7)4:434–446. https://doi.org/10.47475/2500-0101-2022-17404

Fedorov V.E., Turov M.M.. Multi-term equations with Riemann — Liouville derivatives and Hölder type function spaces. Boletin de la Sociedad Matematica Mexicana. 2023;29:42. https://doi.org/10.1007/s40590-023-00509-z

Трибель Х. Теория интерполяции. Функциональные пространства. Дифференциальные операторы. М.: Мир; 1980. 664 c.

Хэссард Б., Казаринов Н., Вэн И. Теория и приложения бифуркации рождения цикла. М.: Мир; 1985. 280 c.


Abstract views: 0

##submission.share##

Published

2024-12-30

How to Cite

Fedorov, V. E., & Avilovich, A. S. (2024). Cauchy Type Problem for Some Quasilinear Equations with Riemann – Liouville Derivatives and a Sectorial Operator. Applied Mathematics & Physics, 56(4), 261-272. https://doi.org/10.52575/2687-0959-2024-56-4-261-272

Issue

Section

Mathematics