On Hyperbolic Equations with Arbitrarily Directed Translations of Potentials

Authors

DOI:

https://doi.org/10.52575/2687-0959-2023-55-4-299-304

Keywords:

Differential-difference Operators, Hyperbolic Equations, Nonlocal Potentials, Smooth Solutions

Abstract

We investigate a hyperbolic equation with an arbitrary amount of potentials undergoing translations in arbitrary directions. Such differential-difference equations arise in various applications not covered by the classical theory of differential equations. On the other hand, they are quite interesting from the theoretical viewpoint because of specific effects caused by the nonlocal nature of the investigated equations. We find a condition for the vector of coefficients at nonlocal terms of the investigated equation and the translation vectors, guaranteeing the global solvability of the investigated equation. Under this condition, we explicitly construct a three-parametric family of smooth global solutions of the investigated equation; two of the specified parameters are real values, while the remaining one is a real-coordinate vector such that its dimension is equal to the amount of nonlocal terms (i. e., translated potentials) of the investigated equation. No commensurability requirements are imposed on the coefficients at nonlocal terms of the equation.


Acknowledgements
The work is supported by the Ministry of Science and Higher Education of the Russian Federation (project number FSSF-2023-0016).

Downloads

Download data is not yet available.

Author Biographies

Vladimir E. Fedorov, Chelyabinsk State University

Doctor of Physical and Mathematical Sciences, Professor, Professor of Mathematical Analysis Department, Chelyabinsk State University,
Chelyabinsk, Russia
E-mail: kar@csu.ru
ORCID: 0000-0002-0787-3272

Anton S. Skorynin, Chelyabinsk State University

Head of Educational and Computational Laboratory of Mathematics Faculty, Chelyabinsk State University,
Chelyabinsk, Russia
E-mail: skorynin@csu.ru
ORCID: 0009-0002-1260-7830

References

Скубачевский А.Л. Неклассические краевые задачи. I. Современная математика. Фундаментальные направления. 2007;26:3–132.

Скубачевский А.Л. Неклассические краевые задачи. II. Современная математика. Фундаментальные направления. 2009;33:3–179.

Мышкис А.Д. Смешанные функционально-дифференциальные уравнения. Современная математика. Фундаментальные направления. 2005;4:5–120.

Hartman P., Stampacchia G. On some non-linear elliptic differential functional equations. Acta Math. 1966;115:271–310.

Skubachevski˘ı A.L. Elliptic Functional Differential Equations and Applications. Basel–Boston–Berlin; 1997. 293 p.

Скубачевский А.Л. Краевые задачи для эллиптических функционально-дифференциальных уравнений и их приложения. Успехи математических наук. 2016;71(5):3–112.

Зайцева Н.В., Муравник А.Б. Гладкие решения гиперболических уравнений со сдвигом на произвольный вектор в свободном члене. Дифференциальные уравнения. 2023;59(3):368–373.

Гельфанд И.М., Шилов Г.Е. Преобразования Фурье быстро растущих функций и вопросы единственности решения задачи Коши. Успехи математических наук. 1953;8(6):3–54.


Abstract views: 93

##submission.share##

Published

2023-12-30

How to Cite

Fedorov, V. E., & Skorynin, A. S. (2023). On Hyperbolic Equations with Arbitrarily Directed Translations of Potentials. Applied Mathematics & Physics, 55(4), 299-304. https://doi.org/10.52575/2687-0959-2023-55-4-299-304

Issue

Section

Mathematics